Abstract

We present a novel and cost-effective approach of using a second similarity transformation of the Hamiltonian to include the missing higher-order terms in the second-order approximate coupled cluster singles and doubles (CC2) model. The performance of the newly developed ST-EOM-CC2 model has been investigated for the calculation of excitation energies of valence, Rydberg, and charge-transfer excited states. The method shows significant improvement in the excitation energies of Rydberg and charge-transfer excited states as compared to the conventional CC2 method while retaining the good performance of the latter for the valence excited state. This method retains the charge-transfer separability of the charge-transfer excited states, which is a significant advantage over the traditional CC2 method. A second order many-body perturbation theory variant of the new method is also proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call