Abstract

Abstract Previous field investigations of the wave-induced pressure field have focused on determination of the momentum input from wind to the surface waves. This is useful for the estimation of wave growth rate and, in particular, the wave growth parameter β. Due to the difficult nature of experimental study of airflow very close to the wave surface, it has been necessary to extrapolate elevated measurements of the wave-induced pressure field to the surface. This practice may be incorrect without adequate knowledge of the complex vertical structure of the pressure field. In addition, the wave-induced pressure and velocity fields are coupled to the near-surface turbulence. Hence, understanding the nature of the wave-induced flow fields is critical for modeling of the near-surface wind and wave fields. Utilizing a simple similarity hypothesis, detailed vertical structure of the wave-induced pressure and velocity components is examined. Results of this analysis are presented using data obtained in the sprin...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.