Abstract
The construction of C(sp3)-C(sp3) bonds is pivotal in organic synthesis; however, traditional methods involving alkyl halides are often limited by substrate tolerance and bond dissociation energies, particularly with alkyl fluorides. Herein, we report a silylboronate-mediated cross-coupling strategy that circumvents these challenges, enabling the efficient formation of C(sp3)-C(sp3) bonds between alkyl fluorides and aryl alkanes under mild conditions. Various alkyl fluorides have also been effectively utilized, demonstrating the versatility and broad applicability of this approach. The use of diglyme is critical for this transformation which encapsulates potassium cations and enhances the reaction efficiency. Conventional alkyl halides, including chlorides, bromides, and iodides, are also suitable for this transformation. Density functional theory (DFT) calculations were conducted on the silylboronate-mediated coupling reactions for the first time. Interestingly, while experimental results suggest a radical mechanism, DFT calculations indicate a preference for an ionic pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.