Abstract

Local drug delivery has been exploited recently to treat hearing loss, as this method can both bypass the blood-labyrinth barrier and provide sustained drug release. Combined drug microcrystals (MCs) offer additional advantages for sensorineural hearing loss treatment via intratympanic (IT) injection due to their shape effect and combination strategy. In this study, to endow viscous effects of hydrogels, nonspherical dexamethasone (DEX) and lipoic acid (LA) MCs were incorporated into silk fibroin (SF) hydrogels, which were subsequently administered to the tympanic cavity to investigate their pharmaceutical properties. First, we prepared DEX and LA MCs by a traditional precipitation technique followed by SF hydrogel incorporation (SF+DEX+LA). After characterization of the physicochemical features, including morphology, rheology, and dissolution, both a suspension of combined DEX and LA MCs (DEX+LA) and SF+DEX+LA were administered to guinea pigs by IT injection, after which the pharmacokinetics, biodegradation and biocompatibility were evaluated. To our surprise, compared to the DEX+LA group, the pharmacokinetics of the SF+DEX+LA hydrogel group did not improve significantly, which may be ascribed to their nonspherical shape and deposition effects of the drugs MCs. The cochlear tissue in each group displayed good morphology, with no obvious inflammatory reactions. This combined MC suspension has the clear advantages of no vehicle, easy scale-up preparation, and good biocompatibility and outcomes, which paves the way for practical treatment of hearing loss via local drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call