Abstract

We are developing a segmented silicon-strip detector for spectral computed tomography. The detector operates in photon-counting mode and allows pulse-height discrimination with 8 adjustable energy bins. In this work, we determine the energy resolution of a detector module using monoenergetic x-rays from 40 keV to 120 keV, provided at the European Synchrotron Radiation Facility, Grenoble. For each incident x-ray energy, pulse height spectra at different input photon fluxes are obtained. We investigate changes of the energy resolution due to charge sharing between pixels and pulse pileup. The different incident energies are used to channel-wise calibrate the pulse-height response in terms of signal gain and offset and to probe the homogeneity of the detector module. The detector shows a linear pulse-height response in the energy range from 40 keV to 120 keV. The gain variation among the channels is below 4%, whereas the variation of the offsets is on the order of 1 keV. We find an absolute energy resolution ( ${\sigma _E}$ ) that degrades from 1.5 keV to 1.9 keV with increasing x-ray energy from 40 keV to 100 keV. With increasing input count rate, ${\sigma _E}$ degrades by approximately $4 \cdot 10^{-3}~\hbox{keV Mcps}^{-1}~\hbox{mm}^2$ , which is, within error bars, the same for the different energies. The effect of charge sharing on the width of the response peak is found to be negligible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.