Abstract

A silicon quantum wire transistor, in which electrons are transported through a very narrow wire, has been fabricated using silicon-on-insulator technology, electron beam lithography, anisotropic dry etching, and thermal oxidation. We have obtained the quantum wire with a width of 65 nm, which is fully embedded in silicon dioxide. This narrow dimension of the wire and large potential barrier between silicon and silicon dioxide make the electrons moving through the wire experience one-dimensional confinement. The step-like structure in the conductance versus gate voltage curve, which is a typical evidence of one-dimensional conductance, has been observed at temperatures below 4.2 K. A period of step appearance and a step size have been analyzed to compare experimental characteristics with theoretical calculation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.