Abstract
An improved fabrication technique for silicon-based MEMS (MEMS: microelectromechanical systems) Infrared (IR) emitter is presented. The IR emitter was fabricated on silicon-on-insulator (SOI) wafer. The resistively heated polysilicon membrane fabricated by using deep reactive ion etching (DRIE) process on backside of SOI wafer has a low thermal mass structure, thus this IR-emitter can be modulated at high frequency. Additionally, the usage of the DRIE process instead of the wet etching process provides a more optimum design for the chip dimension. An appropriate boron (B) dope was used to realize the infrared absorption of silicon or infrared transparence of silicon for achieving self-heating or body emitting effect. By using the SOI wafer, the fabrication processes are simplified, and the production costs are decreased. The membrane temperature and emission spectrum of IR emitter were measured with thermal imaging system and spectroradiometer. The experimental results show that the IR emitter exhibits a strong emission in middle infrared range, and the modulation frequency can reach to 45Hz at 50% modulation depth. It is expected that this IR-emitter can be used in low cost sensing system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.