Abstract

Two benzene with multiple contiguous phenyl substituent derivatives, namely, 1, 2, 3, 4-tetraphenyl benzene (TPB) and bis(1,2,3,4-tetraphenylbenzene-yl) diphenylsilane (TPB-Si), were synthesized by the Knoevenagel/Diels-Alder method. TPB and TPB-Si both showed aggregation-induced emission enhancement (AIEE) properties in tetrahydrofuran/water mixtures. The fluorescence-quenching behaviors of the two compounds with different nitroaromatic compounds were also investigated. TPB and TPB-Si both showed low detection limit, high sensitivity, and high quenching efficiency in detecting nitroaromatic compounds. Furthermore, the two compounds in aggregate state exhibited much better detection abilities than in THF solution. And TPB-Si exhibited better detection ability than TPB in both solution and aggregate state. The reason could be attributed to the special tetrahedral molecular structure of TPB-Si, which was demonstrated by theoretical calculations and crystal structures. Moreover, TPB-Si in solid film also exhibited excellent detection performance to nitroaromatic explosive vapor. This work may serve as a basis for designing new organic materials with great efficiency and sensitivity in fluorescence detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call