Abstract

Background: Dyslipidemia is one of the major risk factors for cardiovascular disease (CVD), along with hypertension, diabetes, smoking and obesity. Approximately 70% of CVD risk remains even after treatment of elevated low-density lipoprotein-cholesterol (LDL-C) by statins. High triglyceride (TG) and low high-density lipoprotein-cholesterol (HDL-C) level are potential therapeutic targets to prevent CVD. Fibrates were associated with a greater reduction in TG, and a greater increase in HDL-C. Fibrates activate specific transcription factors belonging to the nuclear hormone receptor superfamily, termed peroxisome proliferator-activated receptors (PPARs). Fibrates improve atherogenic dyslipidemia by mediating PPARalpha. Pemafibrate is a novel member of the selective PPARalpha modulator (SPPARMalpha) family that was designed to have a higher PPARalpha agonistic activity and selectivity than previous fibrates. Here, we aimed to study the influences of the switching from fenofibrate to pemafibrate on metabolic parameters in type 2 diabetic patients. Methods: We retrospectively picked up type 2 diabetic patients who had undergone the switching from fenofibrate to pemafibrate, and compared metabolic parameters before the switching with the data at 3, 6 and 12 months after the switching. Results: We found 15 patients with type 2 diabetes. Serum alanine aminotransferase significantly decreased at 6 months after the switching as compared with baseline. The estimated glomerular filtration rate (eGFR) significantly increased at 3, 6 and 12 months after the switching from fenofibrate to pemafibrate as compared with baseline. Serum uric acid (UA) levels significantly increased at 3 and 6 months after the switching as compared with baseline. We did not observe changes in other metabolic parameters after the switching. Conclusion: We observed a significant increase of eGFR and serum UA after the switching from fenofibrate to pemafibrate in type 2 diabetic patients. Recent evidences suggest that the improvement of eGFR is beneficially associated with the development of CVD in type 2 diabetic patients. Considering the impact on eGFR, pemafibrate may effectively reduce CVD as compared with fenofibrate. Cardiol Res. 2021;000(000):000-000 doi: https://doi.org/10.14740/cr1333

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.