Abstract

Ongoing research has increased achievable field in trapped field magnets (TFMs) to multi-Tesla levels. This has greatly increased the attractiveness of TFMs for applications. However, it also increases the already very difficult problem of in situ activation and reactivation of the TFMs. The pulsed zero-field-cool (ZFC) method of activation is used in most applications because it can be accomplished with much lower power and more modest equipment than field-cool activation. The critical state model (CSM) has been a reliable theoretical tool for experimental analysis and engineering design of TFMs and their applications for over a half-century. The activating field, BA, required to fully magnetize a TFM to its maximum trappable field, BT,max, using pulsed-ZFC is predicted by CSM to be R ≡ BA/BT,max ≥ 2.0. We report here experiments on R as a function of Jc, which find a monotonic decrease of R to 1.0 as Jc increases. The reduction to R = 1.0 reduces the power needed to magnetize TFMs by about an order of magnitude. This is a critical advantage for TFM applications. The results also indicate the limits of applicability of CSM, and shed light on the physics omitted from the model. The experimental results rule out heating effects and pinning center geometry as causes of the decrease in R. A possible physical cause is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call