Abstract

Abstract Signature-based algorithms are efficient algorithms for computing Gröbner-Shirshov bases in commutative polynomial rings, and some noncommutative rings. In this paper, we first define skew solvable polynomial rings, which are generalizations of solvable polynomial algebras and (skew) PBW extensions. Then we present a signature-based algorithm for computing Gröbner-Shirshov bases in skew solvable polynomial rings over fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.