Abstract
The postgenomic era is providing a wealth of information about the genes involved in many cellular processes. However, the ability to apply this information to understanding cellular signal transduction is limited by the lack of tools that quantitatively describe cellular signaling processes. The objective of the current studies is to provide a framework for modeling cellular signaling processes beginning at a plasma membrane receptor and ending with a measurable endpoint in the signaling process. Agonist-induced Ca 2+ mobilization coupled to down stream phosphorylation events was modeled using knowledge of in vitro and in vivo process parameters. The simulation process includes several modules that describe cellular processes involving receptor activation phosphoinositide metabolism, Ca 2+-release, and activation of a calmodulin-dependent protein kinase. A Virtual Cell-based simulation was formulated using available literature data and compared to new and existing experimental results. The model provides a new approach to facilitate hypothesis-driven investigation and experimental design based upon simulation results. These investigations may be directed at the timing of multiple phosphorylation/dephosphorylation events affecting key enzymatic activities in the signaling pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.