Abstract
Both SKP2 (S-phase kinase-associated protein 2) and transforming growth factor-β1 (TGF-β1) play important roles in cancer metastasis through different mechanisms: TGF-β1 via induction of epithelial-mesenchymal transition (EMT) and SKP2 via downregulating p27(kip1). Recent studies indicated that c-Myc and Akt1 were active players in metastasis. In this study we demonstrated a crosstalk between these pathways. Specifically, we found that TGF-β1 treatment increased SKP2 expression accompanied with increased phosphorylation of Akt1 and c-Myc protein accumulation during EMT. We demonstrated that Akt1 was required for TGF-β1-mediated SKP2 upregulation and that c-Myc transcription factor specifically bound to the promoter of SKP2 for its enhanced transcription. Analysis of 25 samples of normal human skin, nevi, and melanomas revealed a positive correlation between c-Myc and SKP2 accumulation. Furthermore, accumulation of SKP2 and c-Myc proteins was significantly higher in metastatic melanoma samples as compared with that in primary melanomas, which again was higher than that in normal skin or nevi. In summary, our results integrated TGF-β1 signals to SKP2 via Akt1 and c-Myc during EMT, and provided, to our knowledge, a previously unreported mechanistic molecular event for TGF-β1-induced metastasis in human melanoma.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.