Abstract

Long non-coding RNA (LncRNA) as an emerging tumor biomarker plays a key factor in the early diagnosis of cancer. Herein, an innovative signal-switchable photoelectrochemical (PEC) biosensor based on ZrO2@CuO bimetallic oxides and T7 Exo-assisted signal amplification is reported for the ultrasensitive and selective detection of lncRNA (HOX gene antisense intergenic RNA, HOTAIR) in cancer cells. Firstly, MOFs-derived TiO2 nanodisks as an excellent photoactive material show an anodic background signal. When target lncRNA exists, the abundant auxiliary DNA1 is freed from T7 Exo-assisted cycle signal amplification, and then competitively hybridizes with auxiliary DNA2 on the electrode. Subsequently, bimetallic MOFs-derived ZrO2@CuO octahedra with a high specific surface area and porous structure are introduced into TiO2 nanodisks-modified biosensor, which appears a cathodic photocurrent and achieves a switchable signal. The developed signal-switchable PEC biosensor shows ultrasensitive detection of lncRNA HOTAIR with a detection limit of 0.12 fM, and can eliminate the false interference. Importantly, the established PEC biosensor has good correlation with RT-qPCR analysis (P < 0.05) for the quantification of lncRNA HOTAIR in cancer cells, which has great potential application for biomarker detection in the early diagnosis of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.