Abstract

Ultrasonic guided waves have been extensively applied for non-destructive testing of plate-like structures particularly pipes in past two decades. In this regard, if a structure has a simple geometry, obtained guided waves’ signals are easy to explain. However, any small degree of complexity in the geometry such as contacting with other materials may cause an extra amount of complication in the interpretation of guided wave signals. The problem deepens if defects have irregular shapes such as natural corrosion. Signal processing techniques that have been proposed for guided wave signals’ analysis are generally good for simple signals obtained in a highly controlled experimental environment. In fact, guided wave signals in a real situation such as the existence of natural corrosion in wall-covered pipes are much more complicated. Considering pipes in residential buildings that pass through concrete walls, in this paper we introduced Smooth Empirical Mode Decomposition (SEMD) to efficiently separate overlapped guided waves. As empirical mode decomposition (EMD) which is a good candidate for analyzing non-stationary signals, suffers from some shortcomings, wavelet transform was adopted in the sifting stage of EMD to improve its outcome in SEMD. However, selection of mother wavelet that suits best for our purpose plays an important role. Since in guided wave inspection, the incident waves are well known and are usually tone-burst signals, we tailored a complex tone-burst signal to be used as our mother wavelet. In the sifting stage of EMD, wavelet de-noising was applied to eliminate unwanted frequency components from each IMF. SEMD greatly enhances the performance of EMD in guided wave analysis for highly contaminated signals. In our experiment on concrete covered pipes with natural corrosion, this method not only separates the concrete wall indication clearly in time domain signal, a natural corrosion with complex geometry that was hidden and located inside the concrete section was successfully exposed.

Highlights

  • Pipes carrying gas into residential buildings are critical infrastructure. These pipes pass through the concrete walls

  • To check the integrity of these pipes, a reliable method must be able to test without having access to the entire geometry of the structure

  • For even further validation, we examined the performance of this method by applying it on guided wave signals acquired from field test

Read more

Summary

Introduction

Pipes carrying gas into residential buildings are critical infrastructure. Inside the buildings, these pipes pass through the concrete walls. To check the integrity of these pipes, a reliable method must be able to test without having access to the entire geometry of the structure. Ultrasonic guided wave is an effective tool to inspect pipes and has been investigated and improved during past years [1,2,3,4,5,6,7]. Most of the effort in this regard was focused on pipes without any cover or coatings. Existence of coatings around pipes causes limiting inspection range by more attenuation and degrades guided wave test performance. Kwun et al reported that the coefficients in the coated, buried pipes

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.