Abstract

Advanced hemodynamic monitoring is a critical component of treatment in clinical situations where aggressive yet guided hemodynamic interventions are required in order to stabilize the patient and optimize outcomes. While there are many tools at a physician’s disposal to monitor patients in a hospital setting, the reality is that none of these tools allow hi-fidelity assessment or continuous monitoring towards early detection of hemodynamic instability. We present an advanced automated analytical system which would act as a continuous monitoring and early warning mechanism that can indicate pending decompensation before traditional metrics can identify any clinical abnormality. This system computes novel features or bio-markers from both heart rate variability (HRV) as well as the morphology of the electrocardiogram (ECG). To compare their effectiveness, these features are compared with the standard HRV based bio-markers which are commonly used for hemodynamic assessment. This study utilized a unique database containing ECG waveforms from healthy volunteer subjects who underwent simulated hypovolemia under controlled experimental settings. A support vector machine was utilized to develop a model which predicts the stability or instability of the subjects. Results showed that the proposed novel set of features outperforms the traditional HRV features in predicting hemodynamic instability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.