Abstract
A sensitive signal-on photoelectrochemical aptasensor for antibiotic determination was constructed based on the energy level matching between ferrocene and CuInS2. P-type CuInS2 microflower was complexed with reduced graphene oxide (CuInS2/rGO) to get photocathode current with good photoelectric conversion efficiency and stability. Then, hairpin DNA (HP) was covalently bonded to the electrode surface. A triple helix DNA (THMS) was used as a molecular switch. After the specific recognition between target and THMS in homogeneous solution, ferrocene labeled probe (Fc-T2) was released. Finally, Fc-T2 was captured by the HP, which leaded the obvious increase of photocurrent for the energy level matching between ferrocene and CuInS2. The increase of the photocurrent signal was proportional to the concentration of target amoxicillin (AMOX), the linear range was 100 fM-100 nM with detection limit of 19.57 fM. Meanwhile, the method has been successfully applied for milk and lake water samples analysis with satisfactory results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.