Abstract
Identifying anomalies rapidly and accurately is critical to the efficient operation of large computer networks. Accurately characterizing important classes of anomalies greatly facilitates their identification; however, the subtleties and complexities of anomalous traffic can easily confound this process. In this paper we report results of signal analysis of four classes of network traffic anomalies: outages, flash crowds, attacks and measurement failures. Data for this study consists of IP flow and SNMP measurements collected over a six month period at the border router of a large university. Our results show that wavelet filters are quite effective at exposing the details of both ambient and anomalous traffic. Specifically, we show that a pseudo-spline filter tuned at specific aggregation levels will expose distinct characteristics of each class of anomaly. We show that an effective way of exposing anomalies is via the detection of a sharp increase in the local variance of the filtered data. We evaluate traffic anomaly signals at different points within a network based on topological distance from the anomaly source or destination. We show that anomalies can be exposed effectively even when aggregated with a large amount of additional traffic. We also compare the difference between the same traffic anomaly signals as seen in SNMP and IP flow data, and show that the more coarse-grained SNMP data can also be used to expose anomalies effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.