Abstract

Perylene diimide derivatives (PDIs) are suitable ECL luminophore candidates with low triggering potentials and strong ECL signals for fundamental studies and practical applications. However, PDIs tend to aggregate, which affects their optical properties and limits their application in bio-imaging and bio-sensing fields. In this study, an ECL sensor is fabricated based on the layer-by-layer (LBL) assembly of N, N-bis(phosphonomethyl)-3,4,9,10-perylene diimide (PMPDI) and ZrIV ions on the surface of a mesoporous indium tin oxide (ITO) substrate. When six layers of PMPDI are immobilized on ITO, the resulting PMPDI6/ITO electrode shows maximum ECL intensity with K2S2O8 as a co-reactant in the potential range 0 to −0.5 V vs. Ag/AgCl. LBL assembly decreases the aggregation and increases the loading of PMPDI on the mesoporous ITO substrate, which stabilizes and amplifies the ECL signals. The ECL method exhibits excellent sensitivity and selectivity with good stability and reproducibility, when used to detect dopamine (DA) under optimal experimental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.