Abstract

The new improvement keypoint description technique of image-based recognition for rotation, viewpoint and non-uniform illumination situations is presented. The technique is relatively simple based on two procedures, i.e., the keypoint detection and the keypoint description procedure. The keypoint detection procedure is based on the SIFT approach, Top-Hat filtering, morphological operations and average filtering approach. Where this keypoint detection procedure can segment the targets from uneven illumination particle images. While the keypoint description procedures are described and implemented using the Hu moment invariants. Where the central moments are being unchanged under image translations. The sensitivity, accuracy and precision rate of data sets were evaluated and compared. The data set are provided by color image database with variants uniform and non-uniform illumination, viewpoint and rotation changes. The evaluative results show that the approach is superior to the other SIFTs in terms of uniform illumination, non-uniform illumination and other situations. Additionally, the paper demonstrates the high sensitivity of 100%, high accuracy of 83.33% and high precision rate of 80.00%. Comparisons to other SIFT approaches are also included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.