Abstract

A Siamese neural network, which is a deep learning technique, was applied to investigate phase transitions based on polarising microscopic textures of liquid crystals like: antiferroelectric smectic CA* phase and its glass, smectic I phase and its glass, and smectic G and its glass. It is an example of a subtle transition without significant structural changes, where textures above and below the glass transition temperature are similar. The Siamese neural network could distinguish textures of the chosen liquid crystal phases from a glass of that phase. This publication provides details of the Siamese neural network and its implementation based on three different convolutional neural networks has been tested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.