Abstract
Image reconstruction for Electrical Resistance Tomography (ERT) is an ill-posed nonlinear inverse problem. Considering the influence of the sparse measurement data on the quality of the reconstructed image, the l1-regularized least-squares program (l1 regularized LSP) is introduced to solve the inverse problem in this paper. To meet the need of high speed in ERT, the fast iterative shrinkage-thresholding algorithm (FISTA) is employed for image reconstruction in our work. Simulation results of the FISTA and l1_ls algorithm show that the l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> regularized LSP is superior to the l2 regularization method, especially in avoiding the over-smoothing of the reconstructed image. In addition, to improve the convergence speed and imaging quality in FISTA algorithm, the initial guess is calculated with the conjugate gradient method. Comparative simulation results demonstrate the feasibility of FISTA in ERT system and its advantage over the l1_ls regularization method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.