Abstract
Testing for the Hardy-Weinberg equilibrium (HWE) is often used as an initial step for checking the quality of genotyping. When testing the HWE for case-control data, the impact of a potential genetic association between the marker and the disease must be controlled for otherwise the results may be biased. Li and Li [2008] proposed a likelihood ratio test (LRT) that accounts for this potential genetic association and it is more powerful than the commonly used control-only χ² test. However, the LRT is not efficient when the marker is independent of the disease, and also requires numerical optimization to calculate the test statistic. In this article, we propose a novel shrinkage test for assessing the HWE. The proposed shrinkage test yields higher statistical power than the LRT when the marker is independent of or weakly associated with the disease, and converges to the LRT when the marker is strongly associated with the disease. In addition, the proposed shrinkage test has a closed form and can be easily used to test the HWE for large datasets that result from genome-wide association studies. We compare the performance of the shrinkage test with existing methods using simulation studies, and apply the shrinkage test to a genome-wide association dataset for Alzheimer's disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.