Abstract

We hypothesized that a shortened version of a modified Ovsynch program (OVS: GnRH-1 − 7 d − PGF2α-1 − 24 h − PGF2α-2 − 32 h − GnRH-2 − 16 h − AI) that excluded GnRH-1 to resynchronize ovulation in cows bearing a corpus luteum (CL) after a non-pregnancy diagnosis (NPD) or including progesterone supplementation with the OVS treatment for cows without a CL would produce shorter inter-insemination intervals and pregnancy per AI (P/AI) not different from that of cows treated with the OVS treatment. Of the 1697 lactating Holstein cows enrolled in this experiment, complete data were available for only 1584 cows because the remainder was not treated, inseminated per treatment design, left the herd before pregnancy diagnosis, or some other outcome was missing. Cows were enrolled in the study and assigned to either of three treatments at NPD (32 ± 3 d after AI [Day 0]). Cows with a detected CL were assigned randomly to: (1) a modified Ovsynch (OVS; GnRH-1 − 7 d − PGF2α-1 − 24 h − PGF2α-2 − 32 h − GnRH-2 − 16 h − AI) or (2) Short Synch (SS; PGF2α-1 − 24 h − PGF2α-2 − 32 h − GnRH-2 − 16 h − AI). Cows with no CL were assigned to OVS plus a progesterone insert (CIDR). Blood was collected at NPD to measure progesterone concentration and determine accuracy of treatment assignment (progesterone ≥ 1 ng/mL for a functional CL). Overall progesterone concentration at NPD was less in OVS + CIDR cows (1.5 ± 0.3 ng/mL) than in OVS (5.2 ± 0.2 ng/mL) or SS cows (3.7 ± 0.3 ng/mL). No differences in luteolytic risk (progesterone < 0.5 ng/mL at 72 h after PGF2α-1) were detected after PGF2α (>96.7%) and ovulation risk after GnRH-2 was 93.8, 91.7, and 86.2% for SS, OVS, and OVS + CIDR, respectively. Mean and median inter-insemination interval were less in SS (mean = 34.3 ± 0.05 d [median = 35 d] than OVS cows (40.2 ± 0.05 d [42 d]), but that in OVS cows did not differ from OVS + CIDR cows (41.4 ± 0.05 d [42 d]). Technicians were more accurate in visually detecting a functional CL than a non-functional CL (81.2 vs. 61.1%). Sensitivity of detecting a functional CL by technicians averaged 91.2%, but specificity was 39.8%. Pregnancy per AI at 32 ± 3 d after AI was less for SS (16.5% [n = 115]) than OVS (29.3% [n = 133] when a functional CL was inaccurately detected, but did not differ when a functional CL was detected accurately (27.6% [n = 561] vs 30.3% [508]). Pregnancy per AI did not differ between OVS and OVS + CIDR cows regardless of CL status. Short synch is an alternative to the entire modified Ovsynch program to produce similar P/AI when the CL status was detected accurately, and regardless of functional CL status, SS reduced inter-insemination intervals by 7 d.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call