Abstract
Marking arbitrary three-dimensional (3D) target curves on given objects with curved surface is required in many industrial fields, such as fabric prepreg placement in composite material part fabrication, product assembly, surface painting for decoration, etc. A shortcut to the solution of this intractable problem is proposed by utilizing a galvanometric laser scanner (GLS) with the aid of a camera. Without using the existing tedious GLS calibration procedures, the proposed method directly establishes a mapping between the 3D coordinates of the laser spots on the object surface and the control voltages of the scanner. A single-hidden layer feedforward neural network (SLFN) is employed to model the mapping. By projecting a dense grid of laser spots on the object to be marked and simultaneously taking only one image, the SLFN model is trained in minutes via a linear solving mechanism. Experiments demonstrate that the trained SLFN model has a good generalization performance for marking 3D target curves. The 3D laser marking errors on experimental objects are less than 0.5 mm. The proposed method is especially suitable for on-site use and can be conveniently extended to multiple GLSs for marking large complex objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.