Abstract
The effects of equipment parameters of batch distillation column on the yield proportion are discussed and analyzed, the relations between maximal yield proportion and the column equipment parameters are correlated, which not only can be used to appraise rationality of the design parameters of the columns being employed and which but also can be used to new batch distillation column design. Under the assistance of the separation difficulty defined in this paper, the minimum number of theoretical plates is determined by the limit loss proportion method given, and further the actual number of theoretical plates and the height for the batch distillation are calculated by using the redundancy coefficient found to complete the whole design of the batch distillation as shown in the computational sample. Research showed that the actual number of theoretical plates and the height of batch distillation column with the column diameter 0.6 m are 17 and 5.1 m in alcohol mixture separation system of the sample proposed. Moreover, the approach can be extended to the design of batch distillation column with a separation system of multi-component liquid mixture after those adjacent components are treated as numerous binary component systems.
Highlights
IntroductionBatch distillation as a significant and flexible separation approach is frequently. W
Under the assistance of the separation difficulty defined in this paper, the minimum number of theoretical plates is determined by the limit loss proportion method given, and further the actual number of theoretical plates and the height for the batch distillation are calculated by using the redundancy coefficient found to complete the whole design of the batch distillation as shown in the computational sample
For a definite separation task which is completed on a fixed batch distillation column, the product recovery yield at column top is always less than 100% when the required concentration of the product at column top can’t be maintained, there is always a residual light component in the column and they will be treated as a transition product
Summary
Batch distillation as a significant and flexible separation approach is frequently. W. A new operation mode for reactive batch distillation in middle-vessel columns was proposed, depending upon the characteristics of the reaction mixture [5]. Multi-objective dynamic optimizations of novel batch distillation utilizing an evolutionary algorithm were presented and the obtained results showed the feasibility of the proposed methodology for the dynamic process in a middle vessel batch distillation [6]. The control structures of middle vessel batch distillation for separating a ternary system were investigated, and the results showed that a composition control structure and temperature control structure could perform well for controlling the product purity and liquid holdup [8]. A short-cut method for batch distillation columns working at constant reflux was applied to solve a problem of four components that needed to be separated and purified to a mole fraction of 0.97 or better [26]. As a result aim of this investigation is to propose a shortcut design technique to determine the theoretical and actual plate number of the batch distillation column and the height of the batch distillation column to solve the complexity problems that the batch distillation column was designed by referring to the continuous distillation column design theories or to overcome the uncertainty shortcomings that the design of the batch distillation column originated from the empirical method and the semi-empirical method and further set an example to lead the way that can guide the design of batch distillation column from binary system separation to multi-component system separation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.