Abstract
Motivated by a prior applied work of Vese and the second author dedicated to segmentation under topological constraints, we derive a slightly modified model phrased as a functional minimization problem, and propose to study it from a theoretical viewpoint. The mathematical model leads to a second order nonlinear PDE with a singularity at Du=0 and containing a nonlocal term. A suitable setting is thus the one of the viscosity solution theory and, in this framework, we establish a short time existence/uniqueness result as well as a Lipschitz regularity result for the solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.