Abstract
We investigated the effects of short-term dietary zinc deficiency on zinc and calcium metabolism. Four-week-old male Wistar rats were divided into two pair-fed groups for a 1-wk treatment: zinc-deficient group (ZD, 1 ppm); control group (PF, 30 ppm). The mRNA expression of zinc transporters, such as Slc39a (Zip) 4, Zip5, Zip10, and Slc30a (ZnT) 1, in various tissues (liver, kidney, and duodenum) quickly responded to dietary zinc deficiency. Although there was no significant difference in serum calcium concentrations between the PF and ZD groups, serum 1,25-dihydroxycholecalciferol (1,25(OH)2D3) was higher in the ZD group than in the PF group. Moreover, short-term zinc deficiency significantly increased mRNA expression of transient receptor potential (TRP) cation channel subfamily vanilloid (V) member 6, S100 calcium binding protein G (S100g), and ATPase plasma membrane Ca2+ transporting 1 (Atp2b1) in the duodenum. Furthermore, short-term zinc deficiency increased vitamin D receptor (VDR) and cytochrome P450 family 24 subfamily A member 1 (Cyp24a1) mRNA expression in the kidney. These findings suggested that short-term zinc deficiency maintains serum calcium concentrations through Ca absorption-related gene expression in the duodenum, and that short-term zinc deficiency induced the expression of Cyp24a1 in kidney in response to an increase in the serum 1,25(OH)2D3 level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.