Abstract

A facile construction of the typical framework of narcissus alkaloids has been realized by virtue of the development of a practical route involving stereocontrolled epoxide formation and SnCl(4)-catalyzed arene-epoxide coupling. To achieve this goal, it proved to be necessary to devise a strategy that would enable chemical transformations to install an epoxy moiety in a congested environment. The successful preparation of a hindered epoxide from O-isopropylidene-protected 4-aminocyclohexenol required three steps consisting principally of controlled bromohydration and base-promoted closure and N-alkylation. It was found that a catalytic amount of SnCl(4) not only maintained the catalytic cycle but also effected clean arylation to form a fused BC ring system. Several tactics that ultimately proved to be unsatisfactory are also discussed in an effort to set important boundary limits on arene-epoxide coupling. The requisite enantiopure 4-aminocyclohexenol was available via an asymmetric cycloaddition of diene to camphor-based chloronitroso. The total synthesis of (+)-narciclasine was realized in nine steps with an overall yield of 19%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.