Abstract
This paper revisits a new model reduction methodology based on the use of separated representations, the so called Proper Generalized Decomposition—PGD. Space and time separated representations generalize Proper Orthogonal Decompositions—POD—avoiding any a priori knowledge on the solution in contrast to the vast majority of POD based model reduction technologies as well as reduced bases approaches. Moreover, PGD allows to treat efficiently models defined in degenerated domains as well as the multidimensional models arising from multidimensional physics (quantum chemistry, kinetic theory descriptions,…) or from the standard ones when some sources of variability are introduced in the model as extra-coordinates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.