Abstract

Tao conjectured that every dense subset of ${\mathcal P}^d$, the $d$-tuples of primes, contains constellations of any given shape. This was very recently proved by Cook, Magyar, and Titichetrakun and independently by Tao and Ziegler. Here we give a simple proof using the Green-Tao theorem on linear equations in primes and the Furstenberg-Katznelson multidimensional Szemer\'edi theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.