Abstract

AbstractLet G be a metrizable compact group, A a separable C*-algebra, and α:G → Aut(A) a strongly continuous action. Provided that α satisfies the continuous Rokhlin property, we show that the property of satisfying the UCT in E-theory passes from Ato the crossed product C*-algebra A⋊α G and the ûxed point algebra Aα. This extends a similar result by Gardella for KK-theory in the case of unital C*-algebras but with a shorter and less technical proof. For circle actions on separable unital C*-algebras with the continuous Rokhlin property, we establish a connection between the Etheory equivalence class of A and that of its fixed point algebra Aα.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.