Abstract
Recently two different concepts of covers of acts over monoids have been studied by a number of authors and many interesting results discovered. One of these concepts is based on coessential epimorphisms and the other is based on Enochs’ definition of a flat cover of a module over a ring. Two recent papers have suggested that in the former case, strongly flat covers are not unique. We show that these examples are in fact false and so the question of uniqueness appears to still remain open. In the latter case, we re-present an example due to Kruml that demonstrates that, unlike the case for flat covers of modules, strongly flat covers of S-acts do not always exist.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.