Abstract
We show that adaptive least-squares finite element methods driven by the canonical least-squares functional converge under weak conditions on PDE operator, mesh-refinement, and marking strategy. Contrary to prior works, our plain convergence does neither rely on sufficiently fine initial meshes nor on severe restrictions on marking parameters. Finally, we prove that convergence is still valid if a contractive iterative solver is used to obtain the approximate solutions (e.g., the preconditioned conjugate gradient method with optimal preconditioner). The results apply within a fairly abstract framework which covers a variety of model problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.