Abstract

Wasserstein distributionally robust optimization has emerged as a recent topic with broader applications in operations research and machine learning. Various proofs have been presented in the literature, each differing in assumptions and levels of generality. In “A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization,” Zhang, Yang, and Gao present a novel elementary proof that not only shortens existing frameworks but also offers surprising generalizations. Leveraging classical Legendre—Fenchel duality, they demonstrate that strong duality is contingent on a certain interchangeability principle. Moreover, they extend this duality result to encompass risk-averse optimization and globalized distributionally robust counterparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.