Abstract

In the field of maritime traffic management, overcoming the challenges of low prediction accuracy and computational inefficiency in ship trajectory prediction is crucial for collision avoidance. This paper presents an advanced solution using a deep bidirectional long- and short-term memory network (BILSTM) and the Optuna hyperparameter automatic optimized framework. Utilizing automatic identification system (AIS) data to analyze ship navigation patterns, the study applies Optuna to fine-tune the hyperparameters of the BILSTM network to improve prediction accuracy and efficiency. The developed Optuna–BILSTM model shows a remarkable 7% increase in prediction accuracy over traditional back propagation (BP) neural networks and standard BILSTM models. These results not only improve ship navigation and safety but also have significant implications for the development of autonomous ship collision avoidance systems, marking a significant step toward safer and more efficient maritime traffic management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call