Abstract

Ship detection and management in coastal regions are challenging tasks due to the complex appearances of ships and the background. For further applications in the context of fisheries monitoring and vessel traffic services, a single-channel synthetic aperture radar (SAR) is mounted on a number of maneuvering and inexpensive rotor platforms, which are utilized according to the consideration of flexible observation, cost savings, weight, and space constraints. In this paper, a hierarchical scheme of ship detection, ship imaging, and classification is proposed. It mainly includes three parts. First, a mixture statistical model of semi-parametric K-lognormal distribution based on adaptive background windows with a constant false alarm rate (CFAR) is proposed for ship prescreening in SAR imagery. Then, the discrimination stage, combined with ship imaging via the difference between the true ship targets and the false ones in the aspects of micro-Doppler motion properties, is performed. Finally, the simulation and field data processing results are presented to validate the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.