Abstract

Prolonged consumption of diets high in saturated fat and sugar has been related to obesity and overweight, which in turn are linked to cognitive impairment in both humans and rodents. This has become a current issue, especially in children and adolescents, because these stages are crucial to neurodevelopmental processes and programming of adult behavior. To evaluate the effects of gestational and early exposure to an obesogenic diet, three groups with different dietary patterns were established: high-fat and high-sucrose diet (HFS), standard diet (SD), and a dietary shift from a high-fat, high-sucrose diet to a standard diet after weaning (R). Spatial learning and behavioral flexibility in adult male and female Wistar rats were evaluated using the Morris water maze (MWM) at PND 60. Furthermore, regional brain oxidative metabolism was assessed in the prefrontal cortex and the hippocampus. Contrary to our hypothesis, the HFS diet groups showed similar performance on the spatial learning task as the other groups, although they showed impaired cognitive flexibility. The HFS group had increased brain metabolic capacity compared to that of animals fed the standard diet. Shifting from the HFS diet to the SD diet after weaning restored the brain metabolic capacity in both sexes to levels similar to those observed in animals fed the SD diet. In addition, animals in the R group performed similarly to those fed the SD diet in the Morris water maze in both tasks. However, dietary shift from HFS diet to standard diet after weaning had only moderate sex-dependent effects on body weight and fat distribution. In conclusion, switching from an HFS diet to a balanced diet after weaning would have beneficial effects on behavioral flexibility and brain metabolism, without significant sex differences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.