Abstract

Based on the observation that shocks provoked by heat or amphiphilic compounds present some similarities, this work aims at studying whether cells grown on oleate (amphiphilic pre-stress) acquire a tolerance to heat shock. In rich media, changing glucose for oleate significantly enhanced the cell resistance to the shock, however, cells grown on a minimal oleate medium lost their ability to grow on agar with the same kinetic than glucose-grown cells (more than 7-log decrease in 18min compared with 3-log for oleate-grown cells). Despite this difference in kinetics, the sequence of events was similar for oleate-grown cells maintained at 50°C with a (1) loss of ability to form colonies at 27°C, (2) loss of membrane integrity and (3) lysis (observed only for some minimal-oleate-grown cells). Glucose-grown cells underwent different changes. Their membranes, which were less fluid, lost their integrity as well and cells were rapidly inactivated. But, surprisingly, their nuclear DNA was not stained by propidium iodide and other cationic fluorescent DNA-specific probes but became stainable by hydrophobic ones. Moreover, they underwent a dramatic increase in membrane viscosity. The evolution of lipid bodies during the heat shock depended also on the growth medium. In glucose-grown cells, they seemed to coalesce with the nuclear membrane whereas for oleate-grown cells, they coalesced together forming big droplets which could be released in the medium. In some rare cases of oleate-grown cells, lipid bodies were fragmented and occupied all the cell volume. These results show that heat triggers programmed cell death with uncommon hallmarks for glucose-grown cells and necrosis for methyl-oleate-grown cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.