Abstract
Predicting pressure induced wall stress in intracranial aneurysms continues to be of interest for aneurysm safety assessment. In quasi-static analysis, there are two distinct approaches that one may take, the forward approach and the inverse approach. The inverse approach starts from a deformed configuration and thus is naturally suited to image-based, patient-specific analysis. Early studies by the authors' team suggested that the inverse approach, in the context of estimating the wall stress in cerebral aneurysms, depends weakly on the material description. In this article, we present a population study to further demonstrate the inverse method, in particular, the remarkable feature of insensitivity to material properties. Twenty-six aneurysm models derived from patient-specific images were employed in the study. Wall stresses were predicted in both the inverse and forward approaches using three material models. Results showed that, while forward computation yielded up to ~100% stress difference between some materials, the inverse solutions stayed close across materials. The inverse method, in addition to being methodologically accurate in dealing with pre-deformations, has the added convenience of insensitivity to uncertainties in wall tissue properties. New insight into the stress-geometry relation was also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.