Abstract

The proper sizing of Cross Laminated Timber (CLT) walls for the construction of high rise buildings requires to take into account their low shear stiffness and their viscoelastic properties and to integrate them into the framework of actual building codes which are all based upon Ayrton-Perry approach of imperfect columns. The present paper starts thus by recalling the framework of Linear Buckling Analysis of shear weak columns using the Timoshenko beam model. Then, Ayrton-Perry approach of the buckling of imperfect columns is introduced and used to develop a normal stress strength criterion for CLT walls but also an additional shear strength criterion. Both criteria are compared for three characteristic sizes of initial imperfections. Afterwards, orthotropic creep is introduced and its effect on long term stability of shear weak members is investigated and an extension of the previous criteria to long term behaviour is developed. Throughout the study, three numerical examples are used for illustration (a low strength panel, a high strength and an aerated panel) revealing the importance of proposed shear strength verification and the need of experimental characterisation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.