Abstract

In this paper we consider the nonstationary shear flow between two parallel solid and thermoinsulated horizontal plates with the upper one moving irrotationally. The fluid is compressible, micropolar, viscous and heat-conducting, as well as in the thermodynamical sense perfect and polytropic. We assume that, given a Cartesian coordinate system x, y and z, solutions of corresponding problem are x-dependent only. Mathematical model is derived in the Lagrangian description. By using the Faedo–Galerkin method, as well as homogenization of boundary conditions, we derive an approximate system, which we use to obtain a numerical solution to the given problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.