Abstract

In this paper we show a new inequality that generalizes to the unit sphere the Lebedev‐Milin inequality of the exponentiation of functions on the unit circle. It may also be regarded as the counterpart on the sphere of the second inequality in the Szegö limit theorem on the Toeplitz determinants on the circle. On the other hand, this inequality is also a variant of several classical inequalities of Moser‐Trudinger type on the sphere. The inequality incorporates the deviation of the center of mass from the origin into the optimal inequality of Aubin for functions with mass centered at the origin, and improves Onofri's inequality with the contribution of the shifting of the mass center explicitly expressed. © 2021 Wiley Periodicals LLC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.