Abstract

Superconductivity Many physicists working on cuprate superconductors believe that the so-called strange metal phase in the cuprate phase diagram is associated with a quantum critical point. Within this picture, the quantum critical point gives rise to a V-shaped region in the doping-temperature phase diagram of the cuprates: the strange metal phase. Chen et al. used angle-resolved photoemission spectroscopy in the cuprate family Bi2212 to challenge this view. By taking comprehensive measurements as a function of doping and temperature—and making sure that the signal was not affected by environmental conditions—they found an incoherent strange metal phase that was sharply separated from a conventional phase by a temperature-independent vertical line in the phase diagram. Science , this issue p. [1099][1] [1]: /lookup/doi/10.1126/science.aaw8850

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.