Abstract

AbstractThe generalized orthogonal matching pursuit (gOMP) algorithm has received much attention in recent years as a natural extension of the orthogonal matching pursuit (OMP). It is used to recover sparse signals in compressive sensing. In this paper, a new bound is obtained for the exact reconstruction of every K-sparse signal via the gOMP algorithm in the noiseless case. That is, if the restricted isometry constant (RIC) δNK+1 of the sensing matrix A satisfiesthen the gOMP can perfectly recover every K-sparse signal x from y = Ax. Furthermore, the bound is proved to be sharp. In the noisy case, the above bound on RIC combining with an extra condition on the minimum magnitude of the nonzero components of K-sparse signals can guarantee that the gOMP selects all of the support indices of the K-sparse signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.