Abstract
In this letter, we present a sharp algorithmic analysis for alternating projected gradient descent which is used to solve the covariate adjusted precision matrix estimation problem in high-dimensional settings. By introducing a new analytical tool (the generic chaining), we remove the impractical resampling assumption used in the literature. The new analysis also demonstrates that this algorithm not only enjoys a linear convergence rate in the absence of convexity, but also attains the minimax rate with optimal order of sample complexity. Our results, meanwhile, reveal a time-data tradeoff in this problem. Numerical experiments are provided to verify our theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.