Abstract
An important recent development in the area of solution of general sparse systems of linear equations has been the introduction of new algorithms that allow complete decoupling of symbolic and numerical phases of sparse Gaussian elimination with partial pivoting. This enables efficient solution of a series of sparse systems with the same nonzero pattern but different coefficient values, which is a fairly common situation in practical applications. This paper reports on a shared- and distributed-memory parallel general sparse solver based on these new symbolic and unsymmetric-pattern multifrontal algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applicable Algebra in Engineering, Communication and Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.