Abstract

In this paper, "finite point method" (FPM) is presented for modeling 2D shallow water flow problem. The method is based on the use of a weighted least-square approximation procedure, incorporating QR factorization and an iterative adjustment of local approximation parameters. The stabilization of the convective term in this present work is derived from the approximate Riemann solver proposed by Roe. The present method is shown to produce competitive accuracy in the comparisons with the analytical solutions and the well-known Galerkin characteristic-based split (CBS) algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.