Abstract

Neuromorphic computing with a spiking neural network (SNN) is expected to provide a complement or alternative to deep learning in the future. The challenge is to develop optimal SNN models, algorithms, and engineering technologies for real use cases. As a potential use cases for neuromorphic computing, we have investigated a person monitoring and worker support with a video surveillance system, given its status as a proven deep neural network (DNN) use case. In the future, to increase the number of cameras in such a system, we will need a scalable approach that embeds only a few neuromorphic devices in a camera. Specifically, this will require a shallow SNN model that can be implemented in a few neuromorphic devices while providing a high recognition accuracy comparable to a DNN with the same configuration. A shallow SNN was built by converting ResNet, a proven DNN for image recognition, and a new configuration of the shallow SNN model was developed to improve its accuracy. The proposed shallow SNN model was evaluated with a few neuromorphic devices, and it achieved a recognition accuracy of more than 80% with about 1/130 less energy consumption than that of a GPU with the same configuration of DNN as that of SNN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.