Abstract

Abstract Ice streams are regions of rapid ice sheet flow characterised by a high degree of sliding over a deforming bed. The shallow shelf approximation (SSA) provides a convenient way to obtain closed-form approximations of the velocity and flux in a rapidly sliding ice stream when the basal drag is much less than the driving stress. However, the validity of the SSA approximation breaks down when the magnitude of the basal drag increases. Here we find a more accurate expression for the velocity and flux in this transitional regime before vertical deformation fully dominates, in agreement with numerical results. The closed-form expressions we derive can be incorporated into wider modelling efforts to yield a better characterisation of ice stream dynamics, and inform the use of the SSA in large-scale simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.